

BBHRP Assessment Using Ground and Satellite-based High Spectral Resolution IR: Update on TOA

Hank Reversants Dave Tobins Dave Turner,
Bob Knutesen, Leslie Moy, Dan Deslover,
Bob Flolz, Jun Li
University of Wisconsin - Madison
Space Science and Engineering Center

ARM IRF, Washington, DC
3-5 September 2006

ARM STM Topics/ IRF Update

- A. Project Goal/Objectives, Approach, and Tasks
- **B. TOA using AIRS (9/2002-3/2005, Clear sky)**
 - AIRS-LBLRTM radiances
 - AIRS Surface Properties
 - GOES Fluxes compared to RRTM (with AIRS Surface Properties)
- **C.** Surface (2000-2005, Clear Sky)
 - AERI-LBLRTM radiances
 - Pyrgeometer Fluxes compared to RRTM
- **D.** Future Plans

Backup: AIRS - Scanning HIS comparisons

Use of High Spectral Resolution Data

New thrust is applying high resolution from Space to ARM/BBHRP (NASA AIRS on Aqua, Eumetsat IASI on Metop)

Project Approach

- ♦ AIRS and AERI high spectral resolution TOA and surface radiances together strongly constrain atmospheric heating/cooling rates, lower and upper level atmospheric water vapor and temperature, clouds, and surface properties. We use this information to assess the accuracy of the BBHRP inputs, RT calculations, & parameterizations.
- **♦** Derive products consistent with observed radiance spectra, including
 - Refined cloud properties (surface and TOA)
 - Upper level moisture distributions (TOA)
 - Detailed surface properties (TOA)
 - Radiation constraints over extended GCM grid cells (TOA)
- **♦** Special strengths of high resolution with broad spectral coverage:
 - Better sensitivity & heights for low optical depth clouds
 - Nighttime and low-sun cloud and surface properties
 - Better isolation of upper level water vapor influencing TOA flux
 - More compete spectral coverage
- **♦** Scanning HIS is used to validate satellite radiances & algorithms
- ◆ Phasing: Clear SGP-CF to establish tools (extension and refinement of current results covering 1996-2006), proceed to cloudy SGP-CF, then NSA, TWP, AMF, and finally to the grid cell scale for each

New TOA Cases using AIRS Sept 2002-March 2005

 Radiance & flux calculations performed for all overpasses (clear and cloudy conditions, no constraint on RAOB timeliness, allowing evaluation of selection criteria)

1St C 4 A D N A CODNA

♦ More AIRS data available in data sets

Ol. - - - - 4 - . · - 4 · -

♦ Stratosphere uses ECMWF with cold bias correction

Characteristic	1 st Cut-ARM STM	Now- IRF
AIRS overpass criteria for LBLRTM	Clear only, for AIRS 3x3 FOV groups	All AIRS 3x3 FOV groups with center
and RRTM calculations	with center within 50 km of SGP CF	within 50 km of SGP CF
	Co.	
Number of clear cases	3,253 Total, 1,905 Day, 1,348 Night	15,389 Total, 7,190 Day, 8,199 Night
Clear criteria	ARSCL Cloud Mask, AERI MWR SD,	ARSCL Cloud Mask and AIRS surface
	and AIRS surface Properties (ε >1	Properties
	cloudy)	
AIRS data included	Mixture of versions and L1B files	Version 4 with retrievals, surface T &
	providing limited AIRS products	emissivity, and cloud fraction by FOV
Atmospheric State below 70 mb	RAOBS within 1 hour of overpass,	Temporal interpolation of bounding
	microwave scaled WV	RAOBS, microwave scaled WV
Atmospheric State 70 - 0.1 mb	US Standard Climatology-fixed	ECMWF with cold bias correction from
		MIPAS
Atmospheric State 0.1 - 0.005 mb	US Standard Climatology-fixed	US Standard Climatology-fixed
Ozone	TOMS total column,	TOMS total column,
	US Standard profile shape	US Standard profile shape
Surface Temperature and Emissivity	Fit AIRS for vegetated fraction	Fit AIRS for vegetated fraction

Surface properties from AIRS using AERI-observed surface emissivity

Technique

Surface Temperature from assuming emissivity $\epsilon (12 \mu m) = 0.985$

Vegetation Fraction from fitting linear combination of Bare Soil and Vegetation 9 µm radiance

Clear Sky AIRS minus LBLRTM

New Clear Sky AIRS minus LBLRTM

Now 15k clear sky profiles- subset shown

Time Series of AIRS-Calc for various spectral regions

New Time Series of AIRS-Calc

Upper level T & O₃ much better

AIRS minus LBLRTM, Mean & SD

New AIRS minus LBLRTM, Mean & SD

Opaque region much better-

larger spatial/temporal differences increase SD for WV & T trop

Surface temperature and Vegetation Fraction Distributions

New Surface temperature and Vegetation Fraction Distributions

Ts more statistically representative

Maintains
Vegetation
Fraction
distributions

Clear Fluxes: ARM SGP/CF TOA

Co-located Clear Flux Comparison

GOES flux: within 10 km of CF & 1 hour of AIRS

AIRS surface properties: closest pixel (15 km diam)

In error— AIRS surface not actually included $Avg = 1.36 W/m^2$ = 16.4p-p = 60

Progress/Status Summary

- **◆** Making progress on structure and nearing completion of clear sky baseline using AIRS surface information
- Found error in surface properties for previous flux calculations
- **♦** Ready to start handling Cloudy conditions, beginning with overcast SGP
- Will complete clear SGP (1996-2006) and extend to Arctic, Tropics, and AMF (Niger) central sites
- ◆ Still expect to add IASI morning data to AIRS PM when it becomes available
- Plan to add direct use of CERES data

Backup: AIRS - Scanning HIS comparisons

- Validate AIRS Radiance Absolute Calibration
- Demonstrate consistency with ARM radiances

UW Scanning HIS: 1998-Present

HIS: High Resolution Interferometer Sounder (1985-1998)

Characteristics

Spectral Coverage: 3-17 microns

Spectral Resolution: 0.5 cm⁻¹

Resolving power: 1000-6000

Footprint Diam: 1.5 km @ 15 km

Cross-Track Scan: Programmable

including uplooking zenith view

Data System Electronics Interferometer Sensor Module Pointing Motor

Applications:

- ◆ Radiances for Radiative Transfer
- ◆ Temp & Water Vapor Retrievals
- **♦ Cloud Radiative Prop.**
- **♦ Surface Emissivity & T**
- **◆ Trace Gas Retrievals**

Scanning-HIS Radiometric Calibration Accuracy

Similar to AERI description in Best, et al., CALCON 2003

AIRS / S-HIS Comparison Methodology

Spatial colocation is achieved by selecting scenes with low variability and covering the full AIRS FOVs with SHIS observations

The double obs-calc method accounts for altitude and view angle differences and differences in instrument lineshapes

Channels with high sensitivity above the aircraft altitude are excluded from the final comparisons

Example AIRS & SHIS Brightness T Spectra

Comparisons shown for AIRS spectral coverage— SHIS is continuous

AIRS-SHIS Summary

- ➤ Radiance validation is remarkably good
- ➤Includes
 Tropical to
 Arctic atm.
- Extends over3 years
- ➤ HNO₃
 creates 08,
 04c, 04d
 biases
- \gt Small 05=O₃?
- ➤ Small LW CO₂ diffs: above plane contributions?

AIRS-SHIS Summary: Shortwave (2004.09.07)

1st Direct SW Radiance Validation
Excellent agreement for night-time comparison
from Adriex in Italy